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be obtained by impressing a stamp only when ut>l.S. In order to impress a stamp of given form 

to the required depth we must, for ut= 1.5;2;2.5 apply the forces per unit width of the strip, 

equal to 5.58~&, 5.97&, 6.22@. 
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GENERALIZED SOLUTIONS IN THE THEORY OF PLASTICITY* 

B.A. DRUYANOV 

Conditions prevailing on the surfaces of the strong velocity discontinuities 
in rigid-plastic media were studied by many workers, e.g. /l, 2/. However, 
in all cases known to the author the conditions were obtained by utilizing 
a passage to the limit, when the surface of the discontinuity was considered 
as a limit to which a layer tends, the layer undergoing an intense 
deformation and its thickness tending to zero. Meanwhile, it is desirable 
to obtain the conditions at the discontinuities by intrinsic means from 
the system of equations itself, without bringing in the irrelevant concepts 
on what represents the surface of the discontinuity. To this end the 
equations must be given in divergent form. In the theory of plasticity 
the main difficulties in this respect are encountered in connection with 
the law of flow and the law controlling the hardening. 

The present paper shows that certain generalization of the Mises 
principle makes it possible to impart to the inequality expressing it a 
divergent form and enables us to write it in integral form. From this it 
follows that in the incompressible 'plastic medium the surface of dis- 
continuity in the tangential velocity component serves as the surface of 
maximum tangential stresses , with tangential stress directed along the 
velocity jump vector. In a compressible plastic medium the stress 
discontinuity is determined from the condition that the direction of the 
six-dimensional deformation velocity "vector" is continuous. We note 
that the integral form of the Mises inequality was used in /3/ to prove 
the existence and uniqueness of the solution. It was not, however, given 
in divergent form, and the conditions at the discontinuities were not 
considered. 

With regard to the equation describing the hardening law, it can be 
reduced to divergent form when the specific plastic work is used as the 
hardening parameter. 

The problem considered here is that of steady motion of a strip of 
finite thickness undergoing oure shear, in a rigid-.plastic hardening 
medium. The emission of heat caused by plastic deformation and its effect 

*Prikl.Matem.Mekhan.,50,3,483-489,1986 
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on the functions of state and the forces of inertia are all taken into 
account. It is shown that under certain specified conditions the strip 
thickness may tend to zero, i.e. the appearance of isothermal velocity 
discontinuities is possible. The adiabatic and quasistatic cases are 
discussed. It is noted that the insufficiency of the continuous solutions 
in the connected perfect thermorigid-plastic medium was discussed in /4/. 

In important practical problems the thickness of the layer undergoing 
pure shear is small compared with the characteristic dimension and can be 
neglected. Therefore the discontinuous solutions can also be brought inin 
the general case when heat conduction is taken into account. In this 
case the condition of temperature continuity should be omitted. 

Some of the results of this paper were given in /5/. 

1. Model of the material. We will construct a model of the material following, 
basically, /6/. The flow of the medium is governed by the following equations: 

U*j, j = PU,' (S-i) 

11, (Tij, 0, xf = 0 (T*j = G*j - abijp U = ~ij~~j/3) P.2) 

Eij= ?dBij (t4ij =(Ui.j + Uj,i)& @<j = a@/aaij) (1.3) 
X'= Clij(Tijg 6) Eij (Uij= Uji) (1.4) 
pe’ s - Qi,i + uijeij (1.5) 

Here (1.1) are the equations of motion, (a is the stress tensor, p is the density, v 
is the velocity, v' = dvldt), (1.2) is the yield condition, (x is the hardening parameter, 6 
is the ternperture, (1.3) is the associated flow law, (1.4) is the hardening law, (1.5) is 
the equation of heat flow <e = e(@,x) is the internal energy per unit mass and g is the heat 
flux vector). 

The Fourier law of thermal conduction must be generalized for the hardening plastic 
medium, taking the parameter x into account. We shall write it in the form 

qt = --x tee xf e,i (1.6) 
Physical considerations show that the thermal conductivity x decreases as x/7/ increases. 
We complete the description of the model by specifying the dissipation of mechanical 

energy 
D = UijEi, - pT)X’ 

Here q= 11(6,x) is the thermodynamic force corresponding to the hardening parameter x. 
The term 9~' reflects the fact that not all plastic work is converted into heat. Part of 
this work, equal to pqx', is stored at microlevels and is reversible. The part is small and 
does not exceed 20% of (iij~ii /6, 7/. 

If entropy can be introduced for the medium of the type discussed here, then e, q and s 
(the entropy per unit mass) can be expressed in terms of the free energy per unit mass f(e,x) 
/6/ 

11 = afiax, 8 = afjtfiae, e = f -I- 0s 

In this case q and e cannot be specified arbitrarily , since they are connected by the 
relation 

2. Reduction of the fundamental equation to divergent form. The plastic 
potential (1.2) is independent of a, and therefore the equations of plastic flow (1.3) yield 
the equation of incompressibility 

U*,i=O rw 
Using (2.1) we can write the equations of motion and the equation for the law of con- 

servation of energy in the divergent form 

GSj, j = PC0 + P, f w4 
pP,o + p,o C (Si+ (P + P1d.f - (W4~i =O (2.3) 
P = WiG& vi.0 = au&s 

The hardening condition can be written in divergent form in the case when the specific 
plastic work is taken as the hardening parameter, i.e. when the equation of hardening law 
has the form x'=o@tj. Using the equations of motion , we can write this relation in the 
form 

X,0 - P,O -t ((X + PI Q1.i = (~ijd,j (2.4) 
In the case of a compressible plastic medium we use the plastic work per unit mass 
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x’ = pwij as the condition of hardening. Using the equations of motion and law of conserva- 
tion of mass, we can also write this relation in divergent form /8/. 

Let us pause and consider the relations of the associated flow law (1.3). We know that 
the law is equivalent to the Mises maximum principle, which can be expressed by the inequality 

(O{j - Uij*) eij > 0 (2.5) 

Here e is the real deformation rate tensor, u is the real stress tensor and a* is the 
stress tensor satisfying, at the point M of the body under discussion, the yield inequality 
for the given 8,~ 

(2.6) 
Henceforth, we shall assume that a solution of the initial-boundary value problem in 

question exists in class Cr, i.e. continuously differentiable functions efl, vi, 8 and x exist 
which we shall call real, and which satisfy the initial and boundary conditions, all equations 
of the model, and in particular conditions (2.5) and (2.6). 

Let us consider the class of functions cri,, continuously differentiable in some neighbour- 
hood w' of an arbitrary point M of the body, and satisfying in this neighbourhocd the yield 
inequality (2.6) for real 0,~ and the equations of motion (2.2) with real right-hand sides. 
We shall denote this class of functions by Z,, noting that the real ull belong to X1. 

We shall now require that the stresses -u~i,, Uij,: in the Mises inequality belong to x1. 
Such a contraction of the class of admissible et, does not reduce the generality of the Mises 
principle, and does not affect the procedure for obtaining the associated flow law (1.6) from 
inequality (2.5), since the dependence of (~1, on the coordinates is not taken into account 
in this procedure. Indeed, according to the Mises principle, in the classical approach the 
real stress tensor u imparts, at some point of the body, a maximum to the function uttell for 
real sil r out of all ul,, satisfying the yield inequality (2.6) at this point, for real 8 
and x. Therefore, here we have the problem of a conditional extremum of the functions ul,eii, 
in which et, appear as arguments. Itisbecauseofthatthatthedependenceof ~if on the 
coordinates is of no importance. Constructing the Lagrange function m = ci,st,- J.UI (h is the 
Lagrange multiplier) we obtain (1.3). Thus the equations of associated flow law (1.3) follow 
from (2.5) also when ui,~Z,. 

Let us return to condition (2.5). Using relations (2.1) and (2.21, we can write it in 
divergent form (v is the real velocity) 

((uij - uij*) ui),j > O 
Integrating (2.7) over an arbitrary neighbourhood @Co' of the point M and passing to 

the surface integral, we obtain (s is the boundary of o, v in the outer normal) 

{(Uij-Uij*)YiVjdS>O 
8 

(2.8) 

By virtue of the arbitrariness of (1) and the reversibility of the operations used, we 
find that when ull,luij* E Z, and v,~Cr, conditions (2.5) and (1.3) follow from (2.8). We 

find, however, that (2.8) retains its meaning also when ~ij,Uij*~v~ are discontinuous. 
It can be shown that inequality (2.8) also remains valid in the case of compressible 

plastic media, i.e. when the yield condition depends on the mean stress /8/. 
Let us now introduce the class Z of functions uij,Uij* which may become discontinuous 

on some surfaces separating the body into a finite number of parts in every one of which 
ai,, ~1 belongs to X1. When (Jilt vi E 2 * inequality (2.5) is inapplicable. Let us replace 
it by (2.8), i;e. let us assume that inequality (2.8) must hold at all points of the body 
including points on the surface of discontinuity. Thus we shall regard (2.8) as a generalization 
of the Mises inequality to the case of discontinuous (I*, and vi. 

The divergent form of the relations (1.61, (2.1)-(2.4), (2.8) enables us to rewrite them 
in integral form, admitting of discontinuities of the tangential velocity and stress 
components, in the normal heat flux components, and in the hardening parameter x. 

3. Relations at the surface of strong discontinuities. Let us apply inequality 
(2.8) to the region o c 0' containing the point 1y of the surface of discontinuity I' (Fig.1). 
Letus pass to the limit as h + 0. The quantities Sil = Uij - Uij' satisfy the equations of 
equilibriumandare therefore continuous on r. Therefore (2.8) leads, in the limit, to the 
relation Q~,v~[LJJ>O or (square brackets denote a jump) 

u,jEij > U,j*Eij (Eij= ([Vi] Yj + [Vj] Vi)) (3.1) 

Thus the real stress tensor e imparts, on each side of the surface of discontinuity, a 
maximum to the expression ~‘1, E,, out of all uij satisfying the yield inequality. We note 
that according to the Mises principle the tensor E should be regarded as real. Solving the 
problem of the conditional extremum we find that the stresses on both sides of the surface 
of velocity discontinuity must satisfy the relations 
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h 

Fig.1 Fig.2 

Eij=AfPij (3.21 

(A is an undefined function of a point on the surface of the velocity discontinuity). 
If the yield surface is convex, relations (3.2) together with the yield condition 

determine, for the given E,,, the stresses on each side of the surface of discontinuity. If 
on the other hand the yield surface contains a flat part, then the stresses on both sides of 
the surface of discontinuity will not be given uniquely by Eqs.(3.2). 

Relations (3.2) show that at points on the surface of discontialiity, the tensor a,regarded 
as a six-dimensional vector, corresponds on both sides to the point of the yield surface at 
which the "vector" E is directed along the normal to it. Since the vector e is also directed 
along the normal to the yield surface on both sides of r, it follows that the vector s does 
not change its direction during passage across the surface of the velocity discontinuity. 

All the above arguments, including relations (3.1) and (3.2), refer not only to in- 
compressible, but also to compressible media /8/. In the case of an incompressible medium, 
the velocity component normal to the surface of discontinuity is continuous on this surface. 

Let us rewrite condition (3.1) in the form (x1 and%, are tangential stresses at the surface 
of the discontinuity) 

Inequality (3.3) means that real z1 and r1 must impart a maximum to the stress 71 [u,l + 
r,[u,l out of all tangential stresses satisfying the yield condition. From this it follows 
that the "stress vector" tangent to'the surface of discontinuity on each of its sides, must 
be directed along the velocity jump vector, and that is must be equal in magnitude to the 
limiting tangential stress k. Thus strong velocity jumps are possible only on the surface 
of maximum shear. 

Let us consider the hardening law (2.4). In the associated coordinate system the equation 
leads to the expression (v is the rate of propagation of the discontinuity, and u is the 
projection of the material velocity on the direction of the velocity jump vector) 

v [xl = &I - pu WI121 (3.4) 
The equations of motion, taking [u,l = 0 into account, yield 

Ia,1 = 0, DC1 = pv Iu]l 

The heat influx equation yields (q, is the projection of the heat flux vector on the 
normal to the surface of discontinuity) /9/ 

pv[el = [QJ + Ix] (3.6) 

Using (3.51, we can write relation (3.4) in the form 

The Fourier law of heat conduction implies that the temperature is continuous. In the 
adiabatic case ,(x=0) however, the temperature may have discontinuities. 

Let the form and position of the surface of velocity discontinuity in the body be given 
at some instant of time. We shall also assume that the tangential velocity jump [u1 is 
also given on this surface. Then from (3.5) and (3.7) we determine the rate of propagation 
of the discontinuity of u and [xl, and from (3.6) - [p,]. He should remember that the maximum 
tangential stress k is regarded as the parameter of the material, hence the dependence of k 
on 9 and x is given. 

Thus if [@I= 0, then [ul and [xl are connected by Eq.(3.5). In the adiabatic case 
qi = 0 and [q,] = 0, but [81+ 0. Eqs.(3.5), (3.6) and (3.7) define [Cl], [;(.I and u. 
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The conditions at the jump are obtained, in the case of the quasistatic flow, from (3.4) 
and (3.5), with p = 0. The conditions show that in this case [kl = 0. 

If 181 = 0, then we obtain [Xl = 0 and [u] = 0. Therefore, in a quasistatic flow no 
discontinuities are possible. This also applies to isothermal flow /2/. 

If on the other hand [01#0 (the adiabatic case), then [aI and 181 are connected by 
the relation [kl = 0. The latter relation together with (3.4) and (3.6), which in the case 
have the form v Ix1 = k 1~1, pv [el = [;I), determines u, [xl, 101. 

Restricting ourselves to piecewise smooth surfaces of discontinuity, we shall find the 
generalized solution. As usual, we shall understand by the generalized solution the solution 
satisfying the differential equations of the model in the domains of continuity of the solution 
vector and the conditions on the jumps at the surface of discontinuity. In the case of a 
divergent system of equations, such a solution satisfies the system of equations in integral 
form. 

4, The problem of pure shear in a layer of finite thickness. AS was shown 
before, the surface of strong discontinuity in the medium in question must coincide with the 
surface of maximum shear. Therefore, in modelling the structure of the discontinuity it is 
natural to assume that shear deformations prevail. In this connection we shall consider 
steady plane flow of the medium under pure shear in a layer of thickness h (Fig.2). Let 
V= const be the velocity of the material in the direction of the axis Oy, P = u(y) in the 
direction of the axis OX,U = 0 when y< 0, u = u (y) for O< y<h, u = u1 = const for y> 0, 
u (0) = 0, u (h) = ul. This implies that the regions y(0 and y>h do not become deformed. 

The equations of motion, of hardening and of heat flow (under the Fourier law of heat 
conduction) in this case have the form 

(4.1) 

(k (et XL a 64 X) are assumed to be known functions of their arguments, k is the shear yield 
point and a = a,, is the hardening function appearing in (1.4). 

In order to determine u, e1 X for O<y< h, we pose the following boundary conditions: 
u = 8 =X = 0, deldy = 8,’ when y = 0; u = u1 when y =h (the quantity h is to be determined). 

The first two equations of (4.1) yield 

(pue - pa)dxldO = aa, u = pv (k - k,) (4.2) 
a = i?k/c%, f3 = akl& > 0, k, = k (0, 0) 

We see from this that if pVP# pa, for OQ y<h, then there exists a unique solution 
of this system X = X(e), u = u(e), satisfying the condition u IX = 0 for 0 = 0, and, that 
inverse functions also exist. The condition pti# pa meansthat the velocity v must not be 
equal to the velocity of propagation of the weak discontinuities v*= (afilp)Y: for O<y<h. 
We note that system (4.1) is integrable in quadratures in many important cases, for example 
when a =k, i.e. when plastic work is taken as the hardening parameter. From (4.1) we obtain 

Y =z(e), Z(e)=~ [pt7(e-edo)+ xe;-*]-lxde (4.3) 

The solution obtained 
(we neglect the term pqx’). 
x’ > 0, or to 

In some neighbourhood of the point 8=X = 0 the numerator has the same sign as e,', 
therefore when 8,'>0, the inequality will hold provided that v>v, and when 0, < 0, 
provided that v<v+. From (4.2) and (4.3) we obtain 

will be real when the specific plastic power ku' is non-negative 
The latter condition reduces, in the present case, to the inequality 

h = z (e,), ul= PV (k, - k,), Xl = X @d (4.4) 

If U,is given, then the above relation yields e,,X,,h. 
Let the function +(O,X) be such, that v*= vO= con& when e= 0 and x is arbitrary. 

For example, when a-k= (ko’+ 2b(O)x- C (X)flm)l/*, m > 1, we have v*= ((a - 0,5C'Bm)lp)~g I which for 
0 = 0 we obtain U. (0, 0) = (b (0)/p)“’ = const. In this case when V= v,, the first equation of (4.2) 
has a solution ,O=O. Let us now pass to the limit as V-V,,. The solutions of the first 
equation of (4.2) depend continuously on v,therefore when v--rvo,we findthat 0-O for any 
Y E lo, u. Moreover, we see from (4.4) that h-0,' i.e. the deformed layer becomes a surface 
of discontinuity. 

Thus we can have temperaturesatwhichjumpsin isothermal velocity can occur. 
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we see from (4.1) that in the adiabatic formulation of the problem only a discontinuous 

solution exists. 

5. On discontinuous solutions in a heat conducting medium. It has been shown 

that in general a continuous solution exists of the problem of the structure of the discontinuity 

in a heat conducting medium. We know that the introduction of discontinuities simplifies the 

solution considerably. Computations using the formulas of Sect.4 show that the thickness of 

the deformed layer in the problem of the structure of the discontinuity is small in the case 

of real materials compared with the characteristic dimensions of the instrument and the blanks, 

if we have in mind technological problems. The thickness can therefore be neglected in many 

cases. This is obviousy equivalent to a refusal to consider the Fourier Eq.cl.6). From this 

it follows that discontinuous soltuions can be brought in also when heat conduction is taken 

into account, although in this case the condition [e]=O must be omitted. The magnitude of 

the jump in 0 together with [xl and [q,l is determined from the relations (3.4)-(3.61, and 

the rate of propagation of the discontinuity is arbitrary. 

This approach was used in /lo/ for the case of quasistatic flows. 

Sect.4 was written with help of E.A. Svyatova. 
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